Erfarenheter från EU-projektet Sustainable Bridges

Lennart Elfgren Luleå tekniska universitet

CIR-dagen den 1 februari 2011 - Göteborg Convention Centre Järnvägsteknik för långsiktig hållbar utveckling

Disposition

- Bakgrund
- Målsättning
- Resultat
- Erfarenheter
- Fortsatt arbete

Background

Malmbanan was built around 1900, has a length of about 500 km and has more than 100 bridges, the oldest from the time when the line was built.

The iron ore producer, LKAB, wanted to minimize its cost for transportation of the ore to the harbours in the Atlantic (Narvik) and the Baltic (Luleå)?

Axle load 25 -> 30 ton ?

We tested a 20 year old bridge. The test showed that we had no shear fatigue problems.

Sustainable Bridges

EC project within FP6

Started on December 1, 2003 Ended on November 30, 2007

Total budget (official) 10,2 million € of which 6,9 million € as EC contribution

Jan Olofsson, Skanska Coordinator

Lennart Elfgren, LTU Scientific Leader

Objectives

- Increase the transport capacity of existing bridges by allowing higher axle loads (up to 33 tons) or by allowing higher speeds (up to 350 km/hour)
- Increase the residual service lives of existing bridges with up to 25 %
- Enhance management, strengthening, and repair systems.

Railways top 10 priority research areas, WP1

- 1. Better assessment tools
- 2. Non-disruptive maintenance methods
- 3. Verification of theoretical dynamic factors for both design and assessment
- 4. Use of new materials
- 5. System for diagnosis & maintenance needs selection
- 6. Ageing/deterioration of concrete bridges
- 7. Indirect inspection and monitoring dynamics for evaluation/crack detection in metallic bridges
- 8. Repair and waterproofing of concrete
- 9. Better testing methods for existing bridges
- 10. Serviceability of arches

The proportion of bridge types was found to be:

Arches of masonry, stone or concrete **41 %**

Concrete bridges 23 % Steel beam bridges **22 %** Steel/concrete composite bridges

14 %

- Guideline and NDT toolbox: "Inspection and Condition Assessment of Railway Bridges"
- Guideline : "Load and Resistance Assessment of Railway Bridges"
- Guideline : "Monitoring of Railway Bridges"
- Guideline : "Repair and Strengthening of Railway Bridges"

Sustainable Bridges

www.sustainablebridges.net*

Work Packages

Contact

Home

WP 1 Start up and Classification

About

- WP 2 Guidance and Review
- WP 3 Condition Assessment and Inspection Guideline_STR

Workshop - Presentations

- WP 4 Loads, Capacity and Resistance
- WP 5 Monitoring
- WP 6 Repair and Strengthening
- WP 7 Demonstration. Field Testing of Bridges
- WP 8 Demonstration. Monitoring on Bridges
- WP 9 Training and Dissemination

Project Coordinator and Scientific Leader

Project Coordinator

Mr. Jan Olofsson

- Skanska Sverige AB Skanska Teknik SE-405 18 Göteborg Sweden www.skanska.se
- 🖀 +46 31 771 1319
- +46 70 695 8984
- +46 31 771 1927
- jan.olofsson@skanska.se

Project Reports BackgroundDocs

Guideline_ICA

Guideline_LRA

Scientific Leader

Sweden

www.ltu.se

2

Prof. Lennart Elfgren

SE-971 87 Luleå

+46 920 491 360

lennart.elfgren@ltu.se

+46 70 6891 360

+46 920 491 913

Luleå University of Technology

Guideline_MON

Log in

Czechia Cervenka Consulting

Denmark COWI A/S

Finland WSP ConsultingKORTES group Finnish Rail Administration Finnish Road Administration University of Oulu

France Laboratoire Central des Ponts et Chausées (LCPC) Societé National de Chemin des Fers (SNCF)

Germany Deutsche Bahn AG Fed Inst f Materials Res. and Testing (BAM) Rheinisch-Westfälische Tech Hochschule Universität Stuttgart

Norway NORUT Technology

Poland PKP Polish Railway Lines Wroclaw University of Technology

Portugal Universidade do Minho Portugal

Spain Universitat Politècnica de Catalunya

Sweden Banverket Chalmers University of Technology Designtech Projektsamverkan AB Luleå University of Technology

=

.

Guideline for Load and Resistance Assessment of Existing European Railway Bridges

Advices on the use of advanced methods

PRIORITY 6 SUSTAINABLE DEVELOPMENT GLOBAL CHANGE & ECOSYSTEMS INTEGRATED PROJECT

Theory **Limit States Dynamics** Bridges made of - Metal

- Masonry
- Concrete

Examples

Background Documents

428 pp

Bridge at Luossajokk

Can the bridge carry and increased axle load of 25 -> 30 ton during 5 year before being demolished? Ola Enochsson, Luleå University of Technology

S

Luossajokk Assessment 1996

Critical section: top beam in middle of the long span

Probabilistic Methods

Niklas Bagge: Accelerations- och bromskrafter för järnvägsbroar. Examensarbete, LTU 2010

http://pure.ltu.se/portal/files/32449797/LTU-EX-2010-32441330.pdf

SUSTAINABLE BRIDGES

Concrete Strength

Bayesian updating

Compare strengths from tested drilled out cores to the values from other series from the same site in order to adjust standard variations

Thomas Bayes, 1702-1761, a Brittish mathematician and Presbyterian minister, known for having formulated Bayes' theorem, which now often is used to update results in statistical evaluations of data

Safety Index Metod

G = R - S = Resistance - Load action

$$G = R - S = A_{s} f_{st} d \left(1 - \frac{A_{s} f_{st}}{2bdf_{\alpha}} \right) - M_{g} - M_{gb} - M_{j} - M_{q} (1 + D) - M_{h} - M_{t}$$

Guideline for Inspection and Condition Assessment of Existing European Railway Bridges

Including advices on the use of non-destructive testing

259 pp

PRIORITY 6 SUSTAINABLE DEVELOPMENT GLOBAL CHANGE & ECOSYSTEMS INTEGRATED PROJECT

Main deliverable

NDT Toolbox

More than 40 methods described with usage and limitations. Paper and electronic versions available.

Impulse radar			Sustaioable Bridges
Tomography/ M		109	
2.3.1.1 Field of application	Imaging the ini - to detect, loca - to determine	ner structure of masonry e alise and quantify inhomog the moisture content and c	lements (velocity distribution/absorption geneities (voids, metal inclusions) distribution (limited)
Description	Radar tomography is a technique to map the interior of structural objects like pillars, columns and walls using reconstruction algorithms.		
Physical principle	Tomography refers to the cross-sectional imaging of an object from either trans- mission or reflection data collected by radiating the object from many different directions. Either travel time (velocity tomography) or amplitude (attenuation tomography) information from many positions of transmitter-receiver pairs is used to reconstruct the hidden structure.		
Limitation	Resolution strongly depends on the choice of transmitter-receiver pairs (ray cov- erage). Tomography is mainly applied to columns and pillars, where all sides are accessible. Applicable to walls, with only accessible opposite sites. There, with tomographic reconstruction it is not possible to map structures parallel to the surfaces.		
Characterisation			
Physical principle	🗌 Visual 🖾 🛙	Electrical/Electromagnetic	Acoustic Chemical Other
NDT/ destructive	Non-Destru	ctive Minor destruct	tive Destructive
Type of test	Single test	Monitoring	
Equipment Cost	⊠High □M	edium 🗌 Low	
Required education	⊠High □M	edium 🗌 Low	
Examination level	Inspector a	one Inspector + spe	ecialist 🛛 Specialised laboratory
Accuracy	Strongly dependence of the geometry of the measurement and the material in- homogeneities, not established and not validated		
Equipment	Radar system	with 2 separated antennas	s, data processing software
Advantages	Information about the velocity/absorption distribution of the inner structure and the shape of constructional element or material inhomogeneities are given.		
Disadvantages	Time consumin	ng measurements, the resu	ulting image is of limited resolution only
Time consumption	For a 2D meas	urement of 1m scans with	transmitter distance 5 cm approx. 1h;
2.3.1.2 Comments	Capability for a	polication in bridge engine	eering is in research, not vet validated
Standardisation	Not available		
Typical application:		Typical result: (Image/	Graph)
		Tomogram Tomogram	velocity (zmha)

Monitoring Guidelines for Railway Bridges

PRIORITY 6 SUSTAINABLE DEVELOPMENT GLOBAL CHANGE & ECOSYSTEMS INTEGRATED PROJECT 93 pp

One year monitoring at the Stork Bridge

Strain monitoring at the Keraesjokk Bridge

Prototypes were developed:

- Crack sensor
- Bragg grating sensor
- Time of flight sensor, tested at Revonlahti Bridge
- Wireless sensor network
- Dynamic exciter

Online: www.electronics.oulu.fi/sustbridge

One year monitoring at the Stork Bridge

Strain monitoring at the Keraesjokk Bridge

Repair and Strengthening of Railway Bridges - Guideline

Visual Guideline 137 pp

PRIORITY 6 SUSTAINABLE DEVELOPMENT GLOBAL CHANGE & ECOSYSTEMS INTEGRATED PROJECT

USTAINABLE BRIDGE

Third step: Strengthening needs – a detailed descripti

Different CFRP strengthening systems

Plates

Rods

Prestressed
Non prestressed

Grids, Mineral Based Strengthening Systems

Strengthening of the Frövi Bridge

Anders Bennitz, Björn Täljsten, Luleå University of Technology

SUSTAIN

Choice of strengthening

Insertion of tubes

Automated drill in progress

Exit of drillhead

Sc

11 holes
9 m long
1.3° vertical angle
± 15 mm vert.
± 85 mm hor.

Inserted tube ready for sealing and vacuum injection

Anders Bennitz, Disputation18 Feb 2011: Externally Unbonded Post-Tensioned CFRP Tendons – A System Solution http://pure.ltu.se/portal/files/32469379/Anders_Bennitz.Doc2011.pdf

Field Tests

Bridge 1, **Riveted steel bridge** – Avesnes, France

Bridge 2, **Concrete bridge** – Örnsköldsvik, Sweden

Testing of a strengthened R C Bridge 2006 in Örnsköldsvik

12 -2

The bridge was strengthened in bending in order to get a shear failure

Material Properties

Stage	Type of value	Concrete				Steel		
		f _c	E _c	f _t	G _F	$f_{sy} = R_{eh}$	$f_{su} = R_m$	E _s
		MPa	GPa	MPa	Nm/m	MPa	MPa	GPa
Initial properties from original drawings	Charac- teristic	31	32	1.8	-	φ16: 410	φ16: 500	φ16: 200
						φ25: 390	φ25: 500	φ25: 200
	Design ULS	17.2	25.4	1.0	-	φ16: 297.1	φ16: 362	φ16: 158.7
						φ25: 282.6	φ25: 362	φ25: 158.7
Mean properties based on tests (Standard deviations)	Mean	68.5 (8)	25.4 (1.7) ten- sion	2.2 (0.5) uni- axial	154 (82)	φ16: 441 (12)	φ16: 738 (2.4)	φ16: 192.1 (23.3)
						φ25: 411 (8.2)	φ25: 706 (22.6)	φ25: 198.3 (31.5)

Eurocode 2 / BBK04

$$V_{\text{Rd,s}} = A_{\text{sw}} f_{\text{ywd}} (z \cot \theta)/s$$

where:

- A_{sw} is the cross sectional area of the reinforcement (804 mm², 4 Ø16, two hoops)
- *f*_{ywd} is the design yield strength of the shear reinforcement
- z is the inner level arm (900 mm = 0,9 d)
- *θ* is the angle between the concrete compression strut and the beam axis (min 21.8°)
- s is the spacing of the stirrups (300 mm)

Linear and nonlinear 3D FEM Model Brigade and French Code

Arto Puurula, LTU/ Savonia Univ. Benjamin Richard & Christian Cremona, LCPC, Paris

Deflections due to permanent loads and to a point load. Jan Olofsson et al, Skanska

Non-linear 2D FEM-model with Atena

Max. Principal Strain showing Damage Localization Jan Cervenka, Prague, Javier Quesada and Gabriel Sas LTU

Modified Compression Field Theory, Mike Collins et al

47

Midnight at test site

No. of Concession, Name

Sawing for Strengthening with Near Surface Mounted CFRP Rods

27.05.2005

Strengthening procedure Björn Täljsten et al

Final test July 6, 2006

88.991

Strain profile in the east beam under the load at line 4. Compressive concrete strains in the top. Tensile strains in the steel and carbon fibre reinforcement in the lower part.

6 MN

10 MN

Stirrup rupture after yielding

GE

SUSTAINABLE

Video clip

Predicted Load-Carrying Capacity

- Eurocode 2, $\theta = 30^{\circ}$
- Eurocode 2, $\theta = 22^{\circ}$ P = 8,8 MN
- MCFT, Response, $\theta \approx 30^{\circ}$ P = 8,7 MN
- 2D Non-lin, Atena, $\theta \approx 30^{\circ}$ P = 10,8 MN
- Test, θ ≈ 30°

P = 11,7 MN

P = 6,1 MN

Reserve Capacity

The failure load 1170 ton corresponds to 1170 ton / 25 ton \approx 47 axles

The span of 12 m has only room for 4 axles 47 axles / 4 = 11,7 carriages (on top of each other)

The strengthening gives approx. 25 % of the capacity, so without strengthening we have a capacity of approx. 34/4 = 8,5 carriages

A little more than the design case

Conclusions – Bridge Test

- SB methods have been successfully tested for
 - inspection and condition assessment,
 - load carrying capacity predictions,
 - strengthening and monitoring

of a 50 year old reinforced concrete trough bridge.

- A failure in combined shear, bending and torsion was reached for P = 11,7 MN.
- The failure was initiated by rupture of a stirrup after yielding in stirrups and longitudinal reinforcement.
- The failure load was close to predictions with SB methods and 20 to 50 % higher than common methods.
- The test verifies that the anticipated failure mechanism was correct. This is sometimes not the case.

Top W: Arto Puurula, Jean-Christophe Collin, Kevin and Car Enormsson, Rolando Estrada, James Leighton, Hakan Norda, Abraham Diaz de Leon Benard, Otto Horling, Georg Danielsson and Stig Johansson. Front row, Lukasz Topczewski, Lennart Elfgren, Björn Taljsten, Ahti Hallikainen, Gabriel Sas, Bradley Pease, Anders Johansson and Hákan Johansson. Inserted: Ulf Ohlsson, Anders Carolin and Fateh Abdel Kerrouche.

41

TAYE

Acknowledgements

Contributions have been given by the **European Commission** and by partners in the S B Project:

- **Banverket** (Björn Paulsson, Valle Jansen, Anders Kers, Katarina Kieksi, Anders Kronborg, Björn Töyrä)
- **BAM** (Ernst Niederleithinger, Jens Wöstmann, Ralph Bäßler, Boris Milmann, Markus Stoppel, Matthias Behrens)
- CityU (Bradley Pease, Fateh Abdel Kerrouche, W.J.O. Boyle)
- Cervenka Consulting (Jan Cervenka, Vladimir Cervenka)
- COWI (Tomas Frølund, Torben Pedersen, Mette Sloth)
- LTU (Anders Carolin, Georg Danielsson, Lennart Elfgren, Kevin Enochsson, Ola Enochsson, Håkan Johansson, Håkan Nordin, Ulf Ohlsson, Arto Puurula, Gabriel Sas, Håkan Thun, Björn Täljsten)
- LCPC (Christian Cremona)
- **SKANSKA** (In Göteborg: Anna Björklund, Marcus Davidson, Per Kettil and Jan Olofsson; In Örnsköldsvik: Hans-Erik Forslars, Jan-Arle Karlsson, Sten Lundgren)
- **STO** (Otto Norling)
- **University of Uminho** (Paulo Cruz, Rolando Estrada, Abraham Diaz de Leon Benar, Lukasz Topczewski, Dawid Wisniewski)

The following companies and institutions outside the project have also contributed:

- Botniabanan AB (Sören Backlund, Jan Jonsson, Jörgen Mosesson)
- Denmark University of Technology (DTU), (James Leighton, Björn Täljsten)
- Jernhusen (Leif Aker)
- Nordisk Spännarmering (Karl-Erik Nilsson, Stig Johansson, Anders Jansson, Rune Olsson)
- Saviona University, Finland (Jean-Christophe Collin, Arto Puurula, Ahti Hallikainen)
- WSP (Thorbjörn Sundén)
- Ågrens Tryckeri (Arne Eklund)
- Örnsköldsviks kommun (Hans Andersson, Ann-Charlotte Edholm, Ove Sedin, Elvy Söderström)

Dissemination

- Workshop 1: "Inspection and Condition Assessment of Railway Bridges" BAM, Berlin, 23-24.10.2006
- Workshop 2: "Repair and Strengthening of Railway Bridges" LTU, Luleå, 26-27.03.2007
- Workshop 3: "Load and Resistance Assessment of Railway Bridges" COWI, Copenhagen, 21-22.05.2007
- Workshop 4: "Monitoring of Railway Bridges" EMPA, Zurich, 25-26.06.2007____
- Final Conference
 Wroclaw, Poland, 10-11.10.2007

Sustainable Bridges

dODe

Sustainable Bridges

Assessment for Future Traffic Demands and Longer Lives

Edited by: J. Bień, L. Elfgren, J. Olofsson

ISBN 978-83-7125-xxxx

SEXTH FRAMEWORK PROGRAMM

Sustainable Bridges

Management

Different backgrounds and interests, for example

But taking into consideration different views in a good way is a Strength!

Cost saving

Replacement of a bridge in the UK of 100 m² is 1.4 M€

Two lane railway bridge	14 k€/m²
One lane railway	20 k€/m²
Road bridge	7 k€/m²

The cost to repair a typical bridge is 3 k€/m²

A typical 100 m² bridge costs 0,3 M€. For every bridge we "save", we earn about 1,1 M€.

Estimate in Proposal:

- 200 000 railway bridges in Europe á 0,25M€ = 50 G€ (Billions)
- 2 % savings gives 1 G€ (Billion)

Present Estimate:

- 300 000 railway bridges in Europe á 0,5 M€ = 150 G€
- 1000 bridges gives 1 G€ (Billion)

MASTER'S THESIS

Improving Transportation Investment Decisions Through Life-Cycle Cost Analysis Comparative LCCA of Bridges

Marco Ditrani

MASTER OF SCIENCE PROGRAMME Civil and Mining Engineering

Luleå University of Technology Department of Civil, Mining and Environmental Engineering Division of Structural Engineering

2009:189 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 09/189 - - SE

En jämförelse mellan

- 12 befintliga betongbroar i Norrbotten
- 3 projekterade limträbroar
- 3 projekterade rörbroar

Table 5.2 - Summary of Life Cycle cost for studied bridges. Maximum costs are indicated with

bold blue and minimum costs with bold red italics.

				Life		Annuity		
Bridge	Lenth	Width	Area	length	Traffic 2009	Cost	Annuity/area	Annuity/(area*traffic)
No/BaTMan								
Code	m	m	m2	years	vehicles/day	kkr	kkr/m2	kr/(m2*veh/day)
1/24-1790-1	26	7.3	189.8	120	200	11 752	62	310
2/24-1861-1	19	7	133	120	20	6 777	51	2 548
3/24-1497-1	26	7	182	100	370	12 033	66	179
4/24-1753-1	18	7	126	120	2 800	11 712	93	33
5/24-1876-1	20	15.2	304	120	5 000	27 170	89	18
6/24-417-1	23	7.9	181.7	90	1 900	20 371	112	59
7/24-471-1	19	6.9	131.1	100	105	15 971	122	1 160
8/25-1432-1	19	7.9	150.1	100	720	12 643	84	117
9/25-1674-1	22	9	198	80	1 410	30 361	153	109
10/25-1888-1	16	15.1	241.6	100	4 300	38 999	161	38
11/25-780-1	17	7.4	125.8	100	300	9 260	74	245
Glulam 1	20	7	140	80	100	10 005	71	715
Glulam 2	20	7	140	80	500	10 698	76	153
Glulam 3	20	7	140	80	5 000	18 946	135	27
Soil-steel 1	20	7	140	80	100	9 150	65	654
Soil-steel 2	20	7	140	80	500	9 497	68	136
Soil-steel 3	20	7	140	80	5 000	17 096	122	24
Implementing of results from Sustainable Bridges

- Course in Non-Destructive Testing (NDT) and monitoring, 14-15 May 2008 in Ängelholm
- Workshop on Repair and Strengthening, 26-27 May 2009 in Paris
- Two workshops on assessment of existing bridges:
 - Paris 7-8 September 2010
 - Frankfurt 2-3 November 2010
- UIC Code 778-4 Inspection of Bridges
- UIC Code 778-2 Steel Bridge Assessment (Planned)

Conclusions

- We should further investigate the hidden strengths and weaknesses of structures. Full scale tests to failure is one approach.
- Good assessment methods are available but we need more data on deterioration and environmental impact to be able to make reliable whole life assessments.
- By monitoring and strengthening we can extend life length - up to a limit. We must also start to exchange old structures.

Current and Future Needs

- There a significant "hidden strength" in the majority of the European bridge stock
- We must now repair and strengthen more bridges instead of replacing
- The result from Sustainable Bridges shows it is possible in most cases
- The most difficult question is that it takes so long time to implement results from R&D

Thanks for your kind attention! Acknowledgements to colleagues in Sustainable Bridges Final Review with EC Experts in Wroclaw, October 2007

Patrik van Honacker, Adam Grotzicki, Dwight O´Dwyer, EC; Jan Olofsson, Skanska, Mgr, Lennart Elfgren, LTU, Scientific Leader; Brian Bell, Network Rail, WP1; Björn Paulsson, Banverket, WP2; Ernst Niederleithinger, Rosemarie Helmerich, BAM, WP3; Jens Sandager Jensen, COWI, WP4; Glauco Feltrin, EMPA, WP5; Björn Täljsten, LTU, WP6; Christian Cremona, LCPC, WP7; Risto Kiviluoma, WSP, WP8; Jan Bien, WUT, WP9; Britta Schewe, DB.

Thank you for your kind attention

The "Harry Potter Bridge" at Glenfinnan in Scotland built in concrete with no reinforcement by sir Robert McAlpine ("Concrete Bob") in 1897-1901.

Erfarenheter från EU-projektet Sustainable Bridges

Lennart Elfgren Byggkonstruktion Luleå tekniska universitet

CIR-dagen den 1 februari 2011 Göteborg Convention Centre Järnvägsteknik för långsiktig hållbar utveckling

Project Consortium with 32 partners from 12 countries

6 railway partners: Banverket, RHK, NR, DB, SNCF and PLK

3 UK Partners: Network Rail City University Salford University

www.sustainablebridges.net

In conclusion, all the three specific goals for the project have been met!

Achievements

Increased load-carrying capacity by better assessment, monitoring and repair & strengthening methods; The results have been tested and demonstrated on several bridges in order to promote better engineering solutions which will produce savings throughout Europe.

Further work

Management Systems; Life Cycle Costs Failure – mechanisms - More Full Scale Testing